Persamaanlinear dapat mempunyai satu, dua, tiga, hingga n n variabel. Dalam pembelajaran ini hanya akan dibahas persamaan linear dua variabel saja. Misalkan: banyaknya uang sepuluh ribuan = x = x lembar dan banyaknya uang dua puluh ribuan = y = y lembar, maka diperoleh persamaan: 10.000x + 20.000y = 230.000 10.000 x + 20.000 y = 230.000.

Diketahui sistem persamaan linear dua variabel berikut. 2x+3y=83x+5y=14jika penyelesaian dari sistem tersebut adalah x=4 dan y=b,nilai 4a-3b adalah Itu harusnya x = a, karena buat nnyari harus ada variabel a nya juga di spldv + 3y = 83x + 5y = 146x + 9y = 246x + 10y = 28- - y = -4y = 46x + 9y = 246x + 36 = 246x = -12x = -2x = aa = -2y = bb = 44a - 3b =-8 - 12 = -20 bang min 8 kurang 12 itu darimana??

Sistempersamaan linear dua variabel adalah gabungan beberapa pertidaksamaan linear dua variabel yang variabel-variabelnya saling berkaitan (variabelnya sama). Dengan demikian Diketahui sistem pertidaksamaan berikut. x + y ≥ 8 5x + 3y ≥ 30 x ≥ 0, y ≥ 0 Jawaban:
Hai Sobat Zenius! Balik lagi nih sama materi matematika. Pada artikel kali ini kita akan bahas contoh soal dan materi sistem persamaan linear dua variabel SPLDV metode eliminasi dan substitusi. Materi sistem persamaan linear dua variabel ini udah sering muncul di pelajaran SMA, mungkin elo udah nggak asing lagi. Apa sih SPLDV? Fungsinya apa? Cara hitungnya gimana? Nah mending langsung kita simak aja yuk materi dan contoh soal persamaan linear dua variabel di artikel ini. Definisi Sistem Persamaan Linear Dua Variabel SPLDVRumus Persamaan Linear Dua VariabelMetode Penyelesaian Sistem Persamaan Linear Dua VariabelContoh Soal Persamaan Linear Dua Variabel Definisi Sistem Persamaan Linear Dua Variabel SPLDV Sistem persamaan linear dua variabel atau dalam matematika biasa disingkat SPLDV adalah suatu persamaan matematika yang terdiri atas dua persamaan linear PLDV, yang masing-masing bervariabel dua, misalnya variabel x dan variabel y. Ciri-Ciri SPLDV Sudah jelas terdiri dari 2 variabelKedua variabel pada SPLDV hanya memiliki derajat satu atau berpangkat satuMenggunakan relasi tanda sama dengan =Tidak terdapat perkalian variabel dalam setiap persamaannya SPLDV juga ada fungsinya loh dalam menyelesaikan kejadian di kehidupan kita. Seperti menghitung keuntungan atau laba, mencari harga dasar atau harga pokok suatu barang, dan membandingkan harga barang. Nah, sebelum masuk ke rumus dan metode, kita tentunya harus paham unsur-unsur yang ada pada sistem persamaan linear 2 variabel. Apa aja sih? Variabel, yaitu pengubah atau pengganti suatu bilangan yang belum diketahui nilainya secara jelas. Variabel biasanya disimbolkan dengan huruf, seperti a, b, c, … x, y, z. Misalnya jika ada suatu bilangan yang dikalikan 2 kemudian dikurangi 9 dan hasilnya 3, maka bentuk persamaannya adalah 2x – 9 = 3. Nah x merupakan variabel pada persamaan yaitu bilangan yang menjelaskan banyaknya jumlah variabel yang sejenis. Koefisien terletak di depan variabel. Misalnya ada 2 buah pensil dan 4 buah spidol, jika ditulis dalam persamaan adalah Pensil = x , spidol = y Jadi persamaannya adalah 2x + 5y. Nah karena x dan y adalah variabel, maka angka 2 dan 5 adalah koefisien. Konstanta, yaitu nilai bilangan yang konstan karena tidak diikuti oleh variabel di belakangnya. Misal persamaan 2x + 5y + 7. Konstanta dari persamaan tersebut adalah 7, karena tidak ada variabel apapun yang mengikuti yaitu bagian-bagian dari suatu bentuk persamaan yang terdiri dari koefisien, variabel, dan konstanta. Misal ada persamaan 7x -y + 4, maka suku suku dari persamaan tersebut adalah 6x , -y , dan 4. Unsur Persamaan Linear Dua Variabel Arsip Zenius Sebelum lanjut belajar tentang rumus sistem persamaan linear dua variabel, subtitusi dan eliminasi, yuk didownload dulu aplikasi Zenius di gadget elo. Matematika bisa jadi menyenangkan dan mudah dimengerti bareng ZenBot dan ZenCore. Tonton juga video belajar gratisnya dengan klik banner di bawah ini! Download Aplikasi Zenius Tingkatin hasil belajar lewat kumpulan video materi dan ribuan contoh soal di Zenius. Maksimaln persiapanmu sekarang juga! Kalau elo udah paham unsur-unsur di atas, elo mungkin sudah bisa menyimpulkan rumus linear dua variabel. Rumusnya adalah sebagai berikut ax + by = c Tapi apakah cukup dengan menghapal rumusnya saja? Tentu tidak ya. Dari rumus ini setidaknya elo sudah bisa tahu materi matematika apa yang akan elo kerjakan. Bakal penting banget nih buat elo yang sedang bersiap menghadapi UTBK. Nah, untuk cara menghitung sistem persamaan linear dua variabel bisa elo baca di bawah ini. Metode Penyelesaian Sistem Persamaan Linear Dua Variabel Terdapat beberapa cara atau metode dalam menyelesaikan soal persamaan linear dua variabel. Metode tersebut adalah subtitusi dan eliminasi. Pahami kedua metode ini lewat contoh soal SPLDV metode eliminasi dan substitusi yang akan dibahas setelah ini, Metode Substitusi Metode substitusi merupakan salah satu cara menyelesaikan SPLDV dengan cara mengubah satu variabel dengan variabel dari persamaan lain. Langsung cek contoh soal SPLDV metode substitusi di bawah ini ya. Contoh Soal Metode Substitusi Tentukan nilai variabel x dan y dari kedua persamaan berikut dengan menggunakan metode substitusi matematika! 2x + 4y = 28 3x + 2y = 22 Jawab Pertama, elo harus pilih salah satu persamaan yang akan dipindahkan elemennya. Misalnya pilih persamaan pertama yaitu 2x + 4y = 28 Lalu pilih variabel y untuk dipindahkan ke ruas kanan. Maka, persamaannya berubah jadi 2x = 28 – 4y Karena tadi elo memilih variabel y yang dipindah, maka koefisien pada variabel x dihilangkan dengan cara membagi masing-masing ruas dengan nilai koefisien x. 2x/2 = 28-4y/2 Maka dihasilkan persamaan x = 14 – 2y sebagai bentuk solusi dari variabel x. Setelah itu, gabungkan persamaan 3x + 2y = 22 yang tadi tidak pilih pada soal dengan persamaan x = 14 – 2y dengan cara mengganti variabel x dengan persamaan x = 14 – 2y 3x+ 2y = 22 3 14 – 2y + 2y = 22 Di bagian ini variabel x sudah diganti dengan x= 14 -2y, ya 42 – 6y + 2y = 22 -4y = 22 – 42 -4y = -20 -4y/-4 = -20/-4 y = 5. Maka, ditemukan variabel y adalah 5. Setelah ditemukan variabel y = 5, sekarang tinggal cari x dengan memasukkan 5 sebagai variabel y. x = 14 – 2y x = 14 – 25 x = 14 – 10 x = 4. Maka ditemukan variabel x adalah 4. Sehingga jawaban dari soal SPLDV di atas adalah x = 4 dan y = 5. Metode Eliminasi Penyelesaian SPLDV menggunakan metode eliminasi adalah dengan menghapus atau menghilangkan salah satu variabel dalam persamaan tersebut. Misal, variabel dalam persamaan adalah a dan b, nah untuk mencari nilai a, kita harus menghilangkan b terlebih dahulu, begitu juga sebaliknya. Biar makin paham langsung kerjain contoh soal SPLDV metode eliminasi aja yuk! Contoh Soal Metode Eliminasi Tentukan nilai variabel x dan y dari persamaan berikut x + 2y = 20 2x + 3y = 33 Dengan menggunakan metode eliminasi! Jawab Pertama, cari nilai variabel x dengan cara menghilangkan y pada masing-masing persamaan. x + 2y = 20 2x + 3y = 33 Koefisien pada variabel y dari masing-masing persamaan tersebut adalah 2 dan 3. Selanjutnya kita cari KPK kelipatan persekutuan terkecil dari 2 dan 3. 2 = 2, 4, 6, 8, … 3 = 3, 6, 8, … Setelah tahu KPK dari 2 dan 3 adalah 6, kita bagi 6 dengan masing masing koefisien. 6 2 = 3 → x3 6 3 = 2 → x2 Kemudian, kalikan dan lakukan eliminasi dengan menggunakan hasil pembagian masing-masing tadi x + 2y = 20 x3 2x + 3y = 33 _ x2 Maka menghasilkan 3x + 6y = 60 4x + 6y = 66 _ -x = -6 x = 6 Sehingga dapat diketahui bahwa nilai x = 6. Untuk mencari variabel y, elo juga bisa menggunakan cara yang sama, hanya dibalik saja. Itu tadi contoh soal eliminasi 2 variabel. Udah paham belum nih? Yuk cek pemahaman elo udah sampai mana dengan kerjain contoh soal SPLDV berikut ini! Contoh Soal Persamaan Linear Dua Variabel Pembahasan sebelumnya gue udah ajak elo menghitung dengan metode subtitusi dan eliminasi. Yang kali ini gue juga mau ngasih tau bentuk soal pilihan ganda SPLDV yang mungkin keluar di TPS nanti. Di bawah ini yang merupakan sistem persamaan dua variabel adalah … a. 2x + 4y + 4xy = 0 b. 2x + 4y = 14 c. 2x + 4 = 14 Dari pilihan a, b dan c mana nih yang termasuk dalam SPLDV? Gini nih cara jawabnya, elo tinggal lihat rumus SPLDV yang tadi udah dibahas. Yup, jawabannya adalah pilihan b. Coba elo perhatikan pilihan b memiliki 2 variabel yaitu x dan y. Sedangkan, pilihan a memiliki 3 variabel yaitu x, y dan xy. Apalagi pilihan c yang hanya memiliki satu variabel yaitu x. Jadi, sistem persamaan yang merupakan sistem persamaan linear dua variabel adalah 2x + 4y = 14. Nah, jadi sekian penjelasan singkat tentang sistem persamaan linear dua variabel SPLDV, PLDV, serta cara-cara penyelesaiannya. Jangan lupa sering-sering latihan ya biar makin paham! Belajar materi ini lagi yuk bareng penjelasan oleh Zen Tutor, cukup klik banner di bawah ini dan jadi lebih banyak tau! Yuk diklik! Cobain yuk pengalaman belajar yang menyenangkan dan mudah dimengerti di live class Zenius. Dapatkan pula tryout ujian sekolah dan ribuan video materi pembelajaran dengan membeli paket belajar Zenius. Tingkatin prestasi bareng Zenius, langganan sekarang! Langganan sekarang! Baca Juga Artikel Matematika Lainnya Determinan Matriks dan Cara Menghitungnya Sistem Persamaan Linear Dua Variabel Metode Gabungan Dan Metode Grafik Originally published September 11, 2021 Updated by Silvia Dwi

PersamaanLinear Dua Variabel. Bentuk umum persamaan linear dua variable: ax + by = c, himpunan penyelesaian berupa {(x,y)}. Cara menyelesaikan persamaan linear dua variable dapat menggunakan 4 cara yaitu: Grafik Diketahui sistem persamaan seperti di bawah ini: 2p - 3q = 50.

- Apa itu pertidaksamaan linear dua variabel? Dan bagaimana cara menentukan daerah penyelesaian pada pertidaksamaan linear dua variabel? Kita asumsikan jika kita memilki persamaan linear dua variabel y=2x+1, maka pertidaksamaan linear dua variabelnya bisa kita ganti dari sama dengan menjadi kurang dari. Maka pertidaksamaannya adalah y, kurang dari sama dengan ≤ dan lebih dari sama dengan ≥. Pada umumnya variabel ditulis sebagai variabel x dan variabel y. Langkah menentukan daerah penyelesaian pertidaksamaan linear dua variabel jika diketahui pertidaksamaan linearnya Memperhatikan bentuk pertidaksamaan linear dua variabel, diantaranya ax+byc, ax+by≤c, atau ax+by≥c. Membuat garis pada bidang cartesius, dengan cara- Membuat titik potong pada sumbu y dengan cara mensubstitusi x=0 ke dalam Membuat titik potong pada sumbu x dengan cara mensubstitusi y=0 ke dalam Membuat garis yang melalui titik potong sumbu x dan y yang telah ditentukan Menentukan daerah penyelesaian dengan cara menguji pada sembarang titik a,b yang berada di luar persamaan garis. Jika pertidaksamaan yang dihasilkan bernilai benar, maka daerah tersebut merupakan daerah penyelesaian. Jika bernilai salah, maka daerah di seberang garis lah yang merupakan daerah penyelesaiannya. Membuat arsiran pada daerah penyelesaiannya sebagai tanda. Baca juga Contoh Soal Pertidaksamaan Nilai Mutlak Langkah menentukan pertidaksamaan linear dua variabel jika diketahui daerah penyelesaian Tentukan persamaan garisnya- Jika garis melalui koordinat 0,m dan n,0, maka persamaan garisnya mx+ny= Jika garis melalui titik x1, y1 dan x2,y2, maka rumus persamaan garisnya FAUZIYYAH Rumus persamaan garis yang melalui dua titik Menentukan tanda pertidaksamaan dengan cara membuat titik uji pada sembaran titik a,b yang berada di luar persamaan garis. Dapatkan update berita pilihan dan breaking news setiap hari dari Mari bergabung di Grup Telegram " News Update", caranya klik link kemudian join. Anda harus install aplikasi Telegram terlebih dulu di ponsel.
Adapunsistem persamaan linier dua variabel adalah beberapa persamaan linier yang membentuk suatu sistem, sehingga penyelesaiannnya merupakan titik potong seluruh garis-garis dari persamaan linier tersebut Metoda menentukan himpunan penyelesaian sistem persamaan linier ini adalah (1) Metoda grafik (2) Metoda eliminasi (3) Metoda substitusi
Pada materi terdahulu telah diperlajari tentang persamaan linier dua variabel, yaitu persamaan yang mengandung dua variabel dengan pangkat tertinggi satu. Bentuk umumnya ax + by + c = 0. Dalam hal ini a dan b masing-masing dinamakan koefisien dari x dan y, sedangkan c dinamakan konstanta. Penyelesaian dari persamaan linier dua variabel ax + by + c = 0 ini, merupakan pasangan berurutan x, y yang memenuhi persamaan tersebut. Pasangan berurutan ini jika digambar kedalam grafik Cartesius, merupakan titik-titik yang tak hingga jumlahnya, sehingga membentuk suatu garis lurus. Adapun sistem persamaan linier dua variabel adalah beberapa persamaan linier yang membentuk suatu sistem, sehingga penyelesaiannnya merupakan titik potong seluruh garis-garis dari persamaan linier tersebut Metoda menentukan himpunan penyelesaian sistem persamaan linier ini adalah 1 Metoda grafik 2 Metoda eliminasi 3 Metoda substitusi Berikut ini akan diuraikan penjelasan ketiga metoda di atas Metoda Grafik Misalkan diketahui sistem persamaan linier Maka Penyelesaiannya merupakan titik potong kedua garis linier itu. Sehingga dengan metoda grafik, kedua persamaan linier itu harus digambar pada grafik Cartesius. Untuk lebih jelasnya akan diuraikan pada contoh berikut ini 01. Dengan metoda grafik, tentukanlah penyelesaian dari sistem persamaan linier 2x + 5y = 20 dan x – y = 3 Jawab Dengan metoda grafik dapat diketahui bahwa terdapat tiga macam kemungkinan penyelesaian sistem persamaan linier, yaitu Untuk lebih jelasnya ikutilah contoh berikut ini 02. Diketahui sistem persamaan linier ax + 2y = 5 dan 15x – 5y = 14. Tentukanlah nilai a agar sistem persamaan linier tersebut tidak mempunyai titik penyelesaian Jawab Metode Substitusi Penyelesaian sistem persamaan linier dengan metoda substitusi, dilakukan dengan cara “mengganti” salah satu variabel ke dalam variabel yang lain. Untuk lebih jelasnya ikutilah contoh berikut ini 03. Dengan metoda substitusi, tentukanlah penyelesaian dari sistem persamaan linier 3x + y = 3 dan 2x – 3y = 13 Jawab 3x + y = 3 y = 3 – 3x disubstitusikan ke 2x – 3y = 13 diperoleh 2x – 33 – 3x = 13 2x – 9 + 9x = 13 11x = 13 + 9 11x = 22 x = 2 sehingga y = 3 – 32 = 3 – 6 = –3 Jadi penyelesaiannya {2, –3 04. Dengan metoda substitusi, tentukanlah penyelesaian dari sistem persamaan linier 5x – 2y = 1 dan 2x + 3y = 8 Jawab Metoda Eliminasi Penyelesaian sistem persamaan linier dengan metoda eliminasi, dilakukan dengan cara “menghilangkan” salah satu variabel sehingga diperoleh nilai variabel yang lain. Untuk lebih jelasnya ikutilah contoh berikut ini 05. Dengan metoda eliminasi, tentukanlah penyelesaian dari sistem persamaan linier 2x – 3y = 2 dan 5x + 2y = –14 Jawab 06. Dengan metoda eliminasi, tentukanlah penyelesaian dari sistem persamaan linier 6x + y = 11 dan x + 3y = –1 Jawab Sistempersamaan adalah himpunan yang saling berhubungan. Lalu variabel sendiri adalah nilai yang bisa berubah-ubah. Sistem persamaan linear dua variabel (SPLDV) adalah suatu sistem yang terdiri atas dua persamaan linier yang memiliki dua variabel. Dalam suatu SPLDV umumnya melibatkan dua persamaan dengan dua variabel.
Blog Koma - Sistem Persamaan Linear SPL adalah kumpulan persamaan linear yang mempunyai solusi atau tidak mempunyai solusi yang sama untuk semua persamaan. Sistem Persamaan yang akan kita bahas adalah sistem persamaan linear dua variabel, sistem persamaan linear tiga variabel, sistem persamaan linear dan kuadrat, dan sistem persamaan kuadrat dan kuadrat. Untuk artikel kali ini kita akan bahas tentang sistem persamaan linear dua variabel SPLDV. Bentuk Umum Sistem Persamaan Linear Dua Variabel SPLDV Adapun bentuk umum sistem persamaan linear dua variabel dengan variabel $ x \, $ dan $ y $ SPLDV $ \left\{ \begin{array}{c} a_1x+b_1y = c_1 \\ a_2x+b_2y = c_2 \end{array} \right. $ Keterangan *. Variabelnya $ x $ dan $ y $ *. Koefisiennya $ a_1,b_1,a_2,b_2 \in R $ *. Konstantanya $ c_1,c_2 \in R $ Penyelesaian Sistem Persamaan Linear Dua Variabel SPLDV Penyelesaian SPLDV dapat dilakukan dengan beberapa cara yaitu i. Metode grafik ii. Metode Substitusi iii. Metode Eliminasi iv. Metode Eliminasi-Substitusi Gabungan i. Metode grafik Solusi atau penyelesaian SPLDV metode grafik adalah titik potong kedua grafik. Metode grafik yang dimaksud adalah kita harus menggambar grafiknya berupa garis lurus. Untuk materi menggambar garis lurus, silahkan baca artikel "Persamaan Garis Lurus dan Grafiknya" Langkah-langkah *. Gambar grafik kedua persamaan *. Ada tiga kemungkinan gambar grafiknya 1. Sejajar Garis $k$ dan $m$ sejajar dan tidak berpotongan, dakam keadaan ini SPLDV tidak mempunyai penyelesaian. SPLDV tidak mempunyai penyelesaian dengan syarat $ \frac{a_1}{a_2}=\frac{b_1}{b_2} \neq \frac{c_1}{c_2} $ . 2. Berimpit Garis $k$ dan $m$ berimpit menyatu, dakam keadaan ini SPLDV mempunyai penyelesaian banyak tak hingga atau tak trivial karena setiap titik pada garis memenuhi kedua persamaan. Hal ini terjadi dengan syarat $ \frac{a_1}{a_2}=\frac{b_1}{b_2} = \frac{c_1}{c_2} $ . 3. Berpotongan Garis $k$ dan $m$ berpotongan di titik A, dalam keadaan ini SPLDV mempunyai tepat satu penyelesaian trivial atau solusi yaitu titik A. Hal ini terjadi dengan syarat $ \frac{a_1}{a_2} \neq \frac{b_1}{b_2} $ . Contoh 1. Tentukan Penyelesaian SPLDV berikut $ \left\{ \begin{array}{c} x + y = 3 \\ 3x + 3y = 6 \end{array} \right. $ Penyelesaian garis $ k \, x + y = 3 \rightarrow $ melalui titik 0,3 dan 3,0 garis $ m \, 3x + 3y = 6 \rightarrow $ melalui titik 0,2 dan 2,0 Kedua garis sejajar dan tidak berpotongan, sehingga tidak ada solusi yang memenuhi SPLDV tersebut. 2. Tentukan Penyelesaian SPLDV berikut $ \left\{ \begin{array}{c} 2x - y = 3 \\ 6x - 3y = 9 \end{array} \right. $ Penyelesaian garis $ k \, 2x - y = 3 \rightarrow $ melalui titik 0,-3 dan $\frac{3}{2}$,0 garis $ m \, 6x - 3y = 9 \rightarrow $ melalui titik 0,-3 dan $\frac{3}{2}$,0 Garis $k$ dan $m$ berimpit, sehingga SPLDV tersebut mempunyai banyak penyelesaian tak hingga. 3. Jika $a,b$ memenuhi SPLDV berikut, tentukan nilai $ a + b $ ? $ \left\{ \begin{array}{c} x - 2y = 6 \\ 3x + 2y = 6 \end{array} \right. $ Penyelesaian garis $ k \, x - 2y = 6 \rightarrow $ melalui titik 0,-3 dan 6,0 garis $ m \, 3x + 2y = 6 \rightarrow $ melalui titik 0,3 dan 2,0 Jadi solusinya titik A 3, sehingga $a=3$ dan $b=-1,5$. Sehingga nilai $ a + b = 3 + -1,5 = 1,5 = 1\frac{1}{2} $ Jadi, nilai $ a + b = 1\frac{1}{2} $ 4. Diketahui SPLDV berikut $ \left\{ \begin{array}{c} a-1x + y = 1 \\ 6x + 3y = 7 \end{array} \right. $ Agar SPLDV mempunyai tepat satu solusi, tentukan nilai $a$? Penyelesaian Syarat mempunyai tepat satu solusi $ \frac{a_1}{a_2} \neq \frac{b_1}{b_2} $ Sehingga $ \frac{a_1}{a_2} \neq \frac{b_1}{b_2} \rightarrow \frac{a-1}{6} \neq \frac{1}{3} \rightarrow 3a-1 \neq 6 \rightarrow a \neq 3 $ Jadi agar mempunyai tepat satu solusi, nilai $a$ tidak boleh 3 $a \neq 3$. 5. Diketahui SPLDV berikut $ \left\{ \begin{array}{c} a-1x + 3y = 0 \\ 2x + a-1y = 7 \end{array} \right. $ Agar solusi SPLDV di atas tidak hanya 0,0, tentukan nilai $ a^2 - 2a + 10 $ ? Penyelesaian Solusi tidak hanya 0,0 , artinya banyak solusi. Syarat banyak solusi $ \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} $ Sehingga $ \frac{a_1}{a_2} = \frac{b_1}{b_2} \rightarrow \frac{a-1}{2} = \frac{3}{a-1} \rightarrow a-1^2 = 6 \rightarrow a^2 - 2a + 1 = 6 \rightarrow a^2 - 2a = 5 $ Nilai $ a^2 - 2a + 10 = a^2 - 2a + 10 = 5 + 10 = 15 $ Jadi, nilai $ a^2 - 2a + 10 = 15. $ ii. Metode Substitusi Langkah-langkah penyelesaian metode substitusi *. Nyatakan salah satu persamaan dalam bentuk $ y = ax + b \, $ atau $ x = cy + d $ . *. Substitusikan $y$ atau $x$ pada langkah pertama ke persamaan yang lain. *. Selesaikan peersamaan untuk memperoleh $ x = x_1 \, $ atau $ y = y_1 $ . *. Substitusikan nilai $ x = x_1 \, $ atau $ y = y_1 \, $ ke salah satu persamaan untuk memperoleh nilai $ x = x_1 \, $ atau $ y = y_1 $ . *. Penyelesaian adalah $x_1,y_1$ . Contoh 1. Tentukan penyelesaian dari SPLDV berikut $ \left\{ \begin{array}{c} x - y = 3 \\ 2x + 3y = 1 \end{array} \right. $ Penyelesaian *. Ubahlah persamann i, $ x - y = 3 \rightarrow x = y + 3 $ *. Substitusikan $ x = y + 3 $ ke persamaan ii , $ 2x + 3y = 1 \rightarrow 2y+3 + 3y = 1 \rightarrow 5y + 6 = 1 \rightarrow y = -1 $ *. Substitusikan $y = -1 $ ke persamaan i $ x - y = 3 \rightarrow x - -1 = 3 \rightarrow x = 2 $ Jadi solusinya adalah 2, -1. 2. Diketahui SPLDV $ \left\{ \begin{array}{c} 2x + y = 4 \\ x + y = k \\ 3x + 2y = 7 \end{array} \right. $ Mempunyai penyelesaian, tentukan nilai $k$ ? Penyelesaian *. SPLDV mempunyai penyelesaian, artinya nilai $x , y$ memenuhi ketiga persamaan. Untuk memperoleh nilai $x , y$, cukup menyelesaikan persamaan i dan iii, kemudian substitusikan nilai $x , y$ ke persamaan ii untuk memperoleh nilai $k$. *. Ubah persamaan i, $ 2x + y = 4 \rightarrow y = 4 - 2x $ *. Substitusikan $ y = 4 - 2x $ ke persamaan iii, $ 3x + 2y = 7 \rightarrow 3x + 24-2x = 7 \rightarrow 3x + 8 - 4x = 7 \rightarrow x = 1 $ *. Substitusikan $x = 1$ ke persamaan i, $ 2x + y = 4 \rightarrow 2 . 1 + y = 4 \rightarrow y = 4- 2 = 2 $ *. Penyelesaian SPLDV adalah 1, 2, solusi ini juga terpenuhi untuk persamaan ii $ x + y = k \rightarrow 1 + 2 = k \rightarrow k = 3 $ Jadi, nilai $ k = 3 $ iii. Metode Eliminasi Langkah-langkah penyelesaian metode eliminasi *. Samakan koefisien $x$ atau $y$ dengan cara mengalikan konstanta yang sesuai. *. Jumlahkan jika tanda kedua koefisien berbeda atau kurangkan jika tanda kedua koefisien sama sehingga diperoleh $ x = x_1 \, $ atau $ y = y_1 $ . *. Lakukan hal yang sama untuk variabel yang lainnya. *. Penyelesaian adalah $x_1,y_1$ . Contoh 1. Tentukan penyelesaian dari SPLDV berikut $ \left\{ \begin{array}{c} x + 2y = 1 \\ 3x - y = 10 \end{array} \right. $ Penyelesaian *. Eliminasi variabel $ x $ $\begin{array}{cccc} x + 2y = 1 & \text{kali 3} & 3x + 6y = 3 & \\ 3x - y = 10 & \text{kali 1} & 3x - y = 10 & - \\ \hline & & 7y = -3 & \\ & & y = -1 & \end{array} $ *. Eliminasi variabel $ y $ $\begin{array}{cccc} x + 2y = 1 & \text{kali 1} & x + 2y = 1 & \\ 3x - y = 10 & \text{kali 2} & 6x - 2y = 20 & + \\ \hline & & 7x = 21 & \\ & & x = 3 & \end{array} $ Jadi, solusinya adalah 3, -1. 2. Sistem persmaan linear $ \left\{ \begin{array}{c} 2x - y = 4 \\ x - 2y = -1 \\ 2ax + 3by = 12 \end{array} \right. $ Mempunyai penyelesaian jika nilai $a + b$ sama dengan ...? Penyelesaian Selesaikan persi dan persii *. Eliminasi variabel $ x $ $\begin{array}{cccc} 2x - y = 4 & \text{kali 1} & 2x - y = 4 & \\ x - 2y = -1 & \text{kali 2} & 2x - 4y = -2 & - \\ \hline & & 3y = 6 & \\ & & y = 2 & \end{array} $ *. Eliminasi variabel $ y $ $\begin{array}{cccc} 2x - y = 4 & \text{kali 2} & 4x -2 y = 8 & \\ x - 2y = -1 & \text{kali 1} & x - 2y = -1 & - \\ \hline & & 3x = 9 & \\ & & x = 3 & \end{array} $ *. Titik 3,2 adalah solusi dari persamaan i dan ii yang juga sebagai solusi persamaan iii, substitusikan 3,2 ke persamaan iii $ 2ax + 3by = 12 \rightarrow + = 12 \rightarrow 6a + 6b = 12 \rightarrow a + b = 2 $ Jadi, nilai $ a + b = 2 $ iv. Metode Eliminasi-Substitusi Gabungan Metode ini merupakan cara terbaik untuk menyelesaikan SPLDV dan yang paling sering digunakan. Langkah-langkah penyelesaian metode ini *. Eliminasi salah satu variabel misalnya $x$ untuk memperoleh nilai variabel pertama nilai $y$. *. Substitusikan nilai variabel pertama yang diperoleh untuk menentukan nilai variabel lainnya. Contoh 1. Tentukan penyelesaian dari SPLDV berikut $ \left\{ \begin{array}{c} 2x + 3y = 5 \\ 3x - 2y = 1 \end{array} \right. $ Penyelesaian *. Eliminasi variabel $ y $ $\begin{array}{cccc} 2x + 3y = 5 & \text{kali 2} & 4x + 6y = 10 & \\ 3x - 2y = 1 & \text{kali 3} & 9x - 6y = 3 & + \\ \hline & & 13x = 13 & \\ & & x = 1 & \end{array} $ *. Substitusikan $x = 1$ ke persamaan ii $ 3x - 2y = 1 \rightarrow 3. 1 - 2y = 1 \rightarrow 3 - 2y = 1 \rightarrow y = 1 $ Jadi penyelesaiannya adalah 1,1. 2. Jika $a$ dan $b$ memenuhi $ \frac{3x+y+2}{x-y} = 2 \, $ dan $ \frac{x + 2y + 10 }{4x + y} = 3 $ , maka $a - b$ = ...? Penyelesaian *. Sederhanakan kedua bentuk persamaan di atas persi $ \frac{3x+y+2}{x-y} = 2 \rightarrow 3x+y+2 = 2x - 2y \rightarrow x + 3y = -2 $ persii $ \frac{x + 2y + 10 }{4x + y} = 3 \rightarrow x+2y+10=12x+3y \rightarrow 11x + y = 10 $ *. SPLDV menjadi $ \left\{ \begin{array}{c} x + 3y = -2 \\ 11x + y = 10 \end{array} \right. $ Penyelesaian *. Eliminasi variabel $ y $ $\begin{array}{cccc} x + 3y = -2 & \text{kali 1} & x + 3y = -2 & \\ 11x + y = 10 & \text{kali 3} & 33x + 3y = 30 & - \\ \hline & & -32x = -32 & \\ & & x = 1 & \end{array} $ *. Substitusikan $x = 1$ ke persamaan i $ x + 3y = -2 \rightarrow 1 + 3y = -2 \rightarrow y = -1 $ *. Karena solusinya $x = 1$ dan $y = -1$ , maka $a = 1$ dan $b = -1$ sehingga nilai $ a - b = 1 - -1 = 2 $ Jadi, nilai $ a - b = 2 $ . 3. Sistem persamaan SP berikut $ \left\{ \begin{array}{c} \frac{2}{x} + \frac{1}{y} = -1 \\ \frac{1}{x} + \frac{3}{y} = 7 \end{array} \right. $ mempunyai penyelesaian $x_0,y_0$ , tentukan nilai $ 2x_0 + 6y_0 $ ? Penyelesaian *. Misalkan $ p = \frac{1}{x} \, $ dan $ q = \frac{1}{y} $ , SP menjadi $ \left\{ \begin{array}{c} 2.\frac{1}{x} + \frac{1}{y} = -1 \\ \frac{1}{x} + 3.\frac{1}{y} = 7 \end{array} \right. \, \, \Rightarrow \, \, \left\{ \begin{array}{c} 2p + q = -1 \\ p + 3q = 7 \end{array} \right. $ *. Eliminasi variabel $ p $ $\begin{array}{cccc} 2p + q = -1 & \text{kali 1} & 2p + q = -1 & \\ p + 3q = 7 & \text{kali 2} & 2p + 6q = 14 & - \\ \hline & & -5q = -15 & \\ & & q = 3 & \end{array} $ *. Substitusikan $q = 3$ ke persamaan i $ 2p + q = -1 \rightarrow 2p + 3 = -1 \rightarrow p = -2 $ *. Dari nilai $p = \frac{1}{x}$ dan $q=\frac{1}{y}$, diperoleh nilai $x$ dan $y$ berikut $ p = -2 \rightarrow \frac{1}{x} = -2 \rightarrow x = -\frac{1}{2} \rightarrow x_0 = -\frac{1}{2} $ $ q = 3 \rightarrow \frac{1}{y} = 3 \rightarrow y = \frac{1}{3} \rightarrow y_0 = \frac{1}{3} $ Sehingga nilai $ 2x_0 + 6y_0 = 2.-\frac{1}{2} + 6. \frac{1}{3} = -1 +2 = 1 $ Jadi, nilai $ 2x_0 + 6y_0 = 1 $
Diketahui: Persamaan linear dua variabel 2x + y = 4 2x - y = 0 Ditanya : Selesaianya adalah ? Jawaban: 2x + y = 4 2x - y = 0 2y = 4 y = 2 Nilai y = 2, substitusikan Ke salah satu persamaan diatas: 2x + y = 4 2x + 2 = 4 2x = 4-2 2x = 2 x = 1 jadi selesaian dari system persamaan linear diatas adalah ( 1,2) Diketahui : skor 1 Jakarta - Detikers, tahukah kamu apa yang dimaksud dengan persamaan linear dua variabel? Persamaan linear dua variabel SPLDV adalah sebuah sistem yang terbentuk oleh persamaan linear yang melibatkan dua umum, persamaan linear dua variabel ditulis dengan bentuk ax + by = c. Sebagai keterangan, x dan y adalah variabel dengan pangkat satu, sedangkan a dan b adalah koefisien, dan c adalah kehidupan sehari-hari, sistem persamaan linear dua variabel bisa digunakan untuk menentukan harga barang, mencari keuntungan penjualan, dan buku Ayo, Belajar Persamaan, Pertidaksamaan, dan Sistem Persamaan Linear! karya Mirna Indrianti, ada tiga cara yang biasa digunakan untuk menyelesaikan permasalahan persamaan linear dua variabel, yaitu menggunakan metode grafik, substitusi, dan GrafikMetode ini menyelesaikan masalah dengan menentukan titik perpotongan dua garis lurus yang merupakan tampilan dari kedua persamaan linear dua ini adalah langkah-langkah penyelesaian SPLDV dengan metode grafik1. Tentukan titik potong salah satu persamaan linear dengan sumbu X atau sumbu Hubungkan kedua titik potong dengan menggunakan garis Lakukan langkah 1 dan 2 untuk persamaan lain pada Jika kedua titik berpotongan di x,y = x1, y1, penyelesaian SPLD adalah x=x1 dan y= Jika kedua titik tidak berpotongan, SPLDV tidak memiliki SoalTentukan penyelesaian dari sistem persamaan linear dua variabel berikut menggunakan metode Tentukan titik perpotongan tiap-tiap persamaan terhadap sumbu X dan 4x + 5y = 40Titik perpotongan terhadap sumbu X y=0= 4x + 50 = 40= 4x + 0 = 40=x = 40/4 = 10Jadi, garis berpotongan dengan sumbu X di 10,0Titik perpotongan terhadap sumbu Y x=0= 40 + 5y = 40= 0 + 5y = 40=y= 40/5= 8Jadi, garis berpotongan dengan sumbu Y di 0,8Untuk x + 2y = 14• Titik perpotongan terhadap sumbu X y=0= x + 20 = 14= x + 0 = 14= x = 14Jadi, garis berpotongan dengan sumbu X di 14,0• Titik perpotongan dengan sumbu Y x=0= 0 + 2y =14= 2y = 14= y = 14/2 = 7Jadi, garis berpotongan terhadap sumbu Y di 0,72. Gambarkan tiap-tiap persamaan dalam sebuah koordinat Jika sudah Digambar, kamu akan mendapat perpotongan di titik x,y = 2,6Metode SubstitusiCara selanjutnya adalah metode substitusi. Penyelesaian dengan metode ini adalah dengan memasukkan salah satu variabel ke variabel SoalSelesaikan SPLDV di bawah ini menggunakan metode Beri tanda persamaan1 pada persamaan linear yang terletak di atas dan 2 pada persamaan linear bagian Cari persamaan baru dengan cara mengubah persamaan linear 2. Kurangkan persamaan linear 2 dengan 5x= 5x - 5x + y = -11 - 5x= y = -11 - 5x3. Substitusikan persamaan y = -11 -5x di atas ke dalam persamaan 1= 4x + 3y = -11= 4x + 3-11 - 5x = -11= 4x -33 - 15x = -11= -11x - 33 = -114. Tambahkan kedua ruas dengan 33 untuk mendapatkan nilai variabel x= -11x - 33 + 33 = -11 + 33= -11x = 22= x = 22/-11 = -25. Setelah mendapatkan satu nilai variabel, substitusikan ke dalam persamaan 2= 5x + y = -11= 5-2 + y = -11= -10 + y = -11= y = -11 +10= y = -1Jadi, penyelesaian SPLDV adalah x = -2 dan y = -1Metode EliminasiEliminasi berasal dari bahasa Inggris eliminate yang berarti menghapuskan. Artinya, dalam metode ini terdapat proses menghilangkan variabel tertentu untuk mendapatkan nilai dari variabel yang SoalSelesaikan SPLDV berikut dengan metode eliminasiPenyelesaian Pilihlah salah satu variabel yang akan kamu tentukan nilainya. Jika ingin menentukan nilai variabel x, samakan koefisien variabel y dengan cara eliminasi.= -3x + 0 = -15= 3x = 15= x = 15/3 = 5Jadi, nilai x = 5Kemudian, mencari nilai variabel y Kalikan persamaan 2x + 3y = 1 dengan 5 dan persamaan 5x + 3y =16 dengan 2. Hasil perkalian tersebut menjadi persamaan baru seperti berikut. Jadi, penyelesaiannya adalah x = 5, y = -3 Simak Video "Petugas Tegaskan Eliminasi Selektif Tidak Sembarang pada Anjing di Bali" [GambasVideo 20detik] lus/lus dHSabU.
  • 2o19gdyu4c.pages.dev/570
  • 2o19gdyu4c.pages.dev/37
  • 2o19gdyu4c.pages.dev/559
  • 2o19gdyu4c.pages.dev/358
  • 2o19gdyu4c.pages.dev/307
  • 2o19gdyu4c.pages.dev/360
  • 2o19gdyu4c.pages.dev/65
  • 2o19gdyu4c.pages.dev/205
  • diketahui sistem persamaan linear dua variabel